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MICROSTABILITY THEORY FOR DISTRIBUTIONS SEPARABLE
IN ENERGY AND PITCH ANGLE%*

Gary R. Smith
Lawrence Livermore National Laboratory
University of California
Livermore, California 94566, UNITED STATES OF AMERICA

Abstract: Distribution functions that are separable in
energy and pitch angle allow analytical calculation of one
or two velocity-space integrals that appear in the linear

theory of certain microinstabilities.

1. Introduction

Linear stability theories of high-frequency waves in
magnetized plasmas have usually relied on model particle
distribution functions f£. An oft-used model is

f = yfl exp(-alyf - u“vﬁ) , 2 =0,1,2, e (L)
which is separable in the perpendicular and parallel
velocity components v, and v f = fl(vl) f"(v”).
(Normalization constants in f are omitted in this paper.)
This paper presents an additional class of model
distributions that provide more realistic descriptions of
some plasmas than does Eqg. (1) or, more generally, f = flf”.

Model distributions allow one or two velocity-space
integrations to be performed analytically, which greatly
reduces the numerical work required to solve a dispersion
relation. For example, for circularly polarized waves
propagating along the ambient magnetic field (kl = 0) in a
nonrelativistic plasma, one must calculate double velocity-

space integrals like those in the susceptibility
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For the distribution (1),
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L = (w - Q)at/z/k", and zl is the m = 1 member of a family

of functions (m = 0,1,2, e«¢)

x"1/2 .f du (u - c)-l o™ exp(-uz) , (4)
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which are related to the standard plasma dispersion function
Zg- Numer ical calculation of the right side of Eqg. (3)
involves evaluation of the analytic function Zq . which is
orders of magnitude gquicker than the evaluation of the
double integral in Eq. (2).

2. Nonrelativistic Plasmas with Symmetric Pitch-Angle

Distributions

Consider now the class of distributions that are
separable in speed v and pitch angle ¢ = cos-l(v"/v):
f = F(v)G(¢). For nonrelativistic plasma and k, = 0, the
class of speed distributions
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F(v) = exp(-avz) , g = 0'1'2' e e (5)

(= -]
allows one of the two velocity-space integrals (J; dv v2---)
in x to be performed analytically. The pitch-angle integral

can also be performed analytically if we choose
G = [H(¢-¢+) - H(é-¢_) + H(d-m+é_) - H(¢-m+4.)1 , (6)

where H denotes the Heaviside step function. This G(4),
which obeys the symmetry G(¢) = G(nv - ¢), is illustrated in

Fig. 1. For ¢_ = m/2, G(¢) represents a distribution of
T
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-
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particles with pitch angles in the range ¢ < ¢ < m = ¢,

and models confinement in a magnetic mirror of ratio

(sin ¢+)'2. For ¢_ < m/2, G(¢) represents particles with
pitch angles near ¢ = ¢i = (¢, + ¢ )/2 and ¢ = 1 - ¢i'
i.e., near a conical surface in velocity space. For the

distribution given by Egs. (5)-(6), the susceptibility (2) is
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3. Nonrelativistic Plasmas with Unsymmetric Pitch-Angle
Distributions

Pitch-angle distributions G(¢) that are not symmetric
about ¢ = 1/2 but are piecewise constant in ¢ also allow
the pitch-angle integral to be performed analytically. An
example is G(¢) = H(¢ - 6), 0 < ¢ < n, which represents a
particle distribution that is isotropic except for the
absence of all particles in an unsymmetric loss cone
0 < $ < 8. For nonrelativistic plasma, for kl = 0, and
for the Maxwellian speed distribution (5) with 2 = 0, the
susceptibility (2) is
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The functions 71 and 23 are defined by (m = 0,1,2, <°°)
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which differs from Eg. (4) only through the factor of
sgn(u) . Recursion relations exist among the Em’ and
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where E, is the exponential-integral function.

4. Relativistic Plasmas

Plasmas with substantial fractions of relativistic
electrons require the numerical calculation of one or two
velocity-space integrals that appear in dispersion relations.
This difficulty arises because of the complicated dependence

on velocity-space variables of the wave-particle resonance

conditions
wy - nQ - k"p”/M =0 ' (7)
where n is an integer, y = {1 + (pf + pﬁ)/Mzczll/zl

p, and p, are momentum components, and M is the rest mass.
One velocity-space integral (the pitch-angle integral) can
be performed analytically if either k; = 0 or k|I =0,
provided the distribution f has the form F(v)G(¢) and

G(¢) is piecewise constant [e.g., Eg. (6)]. Since the
speed integral is evaluated numerically, any F(v) can be
used. Convenient velocity-space variables are x = cos ¢

and y = y_l, in terms of which Eg. (7) becomes

w - nly - k”cx (1 - yz)l/2 =0 . (8)

The x dependence in Eg. (8) is simple enough to allow
analytical calculation of the x (pitch-angle) integral if

k, = 0. For the other special wave-propagation direction
(k” = 0), Eq. (8) has no x dependence but the Bessel
functions that appear for kl # 0 cause x dependence. Still,
the x integral can be replaced by a rapidly convergent

infinite sum and, in this sense, can be performed
analytically.
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